Crystal and Solution Structures of Nickel(II)-13-Membered Macrocyclic Tetramine [1,4,7,10-Tetraazacyclotridecanenickel(II)] Effected by a Pendent Phenol Eiichi KIMURA,* Keiji UENISHI, Tohru KOIKE, and Yoichi IITAKA[†] Department of Medicinal Chemistry, Hiroshima University, School of Medicine, Kasumi, Hiroshima 734 [†] Department of Pharmaceutical Sciences, Tokyo University, Hongo, Tokyo 113 In crystal structure of Ni^{II}-phenol-pendent[13]aneN₄ complex 3 the pendent phenolate coordinates to high-spin Ni^{II} in a folded [13]aneN₄: in aqueous solution, the equilibrium of phenol + phenolate directly determines low-spin, square-planar or high-spin, folded macrocyclic structure. Structures of complexes of saturated tetra-amine macrocycles are closely controlled by the relative size of metal ions and the macrocyclic cavity. For 13-membered saturated tetraaza macrocycle 1,4,7,10-tetraazacyclotridecane ([13]aneN₄) taking the most stable square-planar configuration (trans-III form), 2) the best-fit metal-nitrogen bond length is calculated to be 1.92 Å. Ni II ion squeezed in a center of the trans-III configuration indeed takes low-spin state with its Ni-N bond length (1.86 Å) 4) being close to the ideal one (1.89 Å). In an aqueous solution at 25 °C, Ni II-[13]aneN₄ takes overwhelmingly a low-spin, square-planar trans form (87%) over a high-spin, folded cis form (13%). 6) Recently, we have designed [14]aneN₄ attached with a phenol pendent 1.7) In Fe^{II 7}) and Ni^{II 8}) (both high-spin) complexes this intramolecular phenolate becomes the fifth, axial ligand. The crystal structure of the Ni^{II} complex dis- 1138 Chemistry Letters, 1986 closes the appropriate positioning of the phenolate at the top of high-spin Ni^{II} residing in the center of the square-planar macrocyclic N₄.8) An important consequence of the phenolate axial coordination is the stabilization of higher oxidation states of the central metals. 7,8) Then it was wondered how such a LF strength of the intramolecular phenolate might affect the spin state and structure of Ni^{II} -phenol-pendent[13]aneN₄(2) complex that otherwise would adopt a rigid square-planar macrocyclic configuration around the low-spin Ni^{II}. We have now found hitherto unknown, folded cis-configuration of [13]aneN₄ with high-spin Ni^{II} in the crystal structure of 3.9) We have also discovered that the <u>cis-trans</u> equilibrium directly depends on the dissociation of the pendant phenol proton. Fig. 1. ORTEP¹²⁾ drawings of $\underline{3}^{\circ}\text{ClO}_4$ Atoms are drawn with 30% probability ellipsoids. Bond angles are as follows: 81.5(2)°, N₁-Ni-N₄; 96.7(2)°, N₁-Ni-O₂₀; 81.3(2)°, N₄-Ni-N₇; 94.1(3)°, N₁₀-Ni-N₁; 172.8(2)°, N₄-Ni-O₂₀; 129.0(4)°, Ni-O₂₀-C₁₅; 173.2(2)°, N₁₀-Ni-O₅W. The new ligand $\underline{2}$ (mp 72-74 °C) was synthesized in the same manner as before, $^{7)}$ except using 1,8-diamino-3,6-diazaoctane instead of 1,9-diamino-3,7-diazanonane. The \underline{pK}_a value of $\underline{2}$ are 11.54, 10.31, < 2, < 2 (for nitrogens), and 8.71 (phenol), as determined by pH-metric and spectrophotometric titrations. Light blue crystals of $\underline{3}$ as a mono $\mathrm{ClO_4}^-$ salt ($\mathrm{Cl_{15}H_{25}N_4ONiClO_4^*H_2O}$) were obtained by the reaction of $\underline{2}$ and $\mathrm{NiSO_4}$ in the presence of excess $\mathrm{NaClO_4}$ in pH 9 aqueous solution. They are monoclinic, space group $\underline{P2_1/a}$, \underline{a} = 15.852(8) $\overset{\circ}{A}$, \underline{b} = 14.607(8) $\overset{\circ}{A}$, \underline{c} = 8.621(5) $\overset{\circ}{A}$, β = 94.81(5) $\overset{\circ}{O}$, \underline{Z} = 4, and $\underline{D_C}$ = 1.514 g cm⁻³, for graphite-monochromated CuK_α radiation. A total of 2410 reflections above the 26(I) level out of 4237 theoretically possible ones were collected on a Philips PW1100 diffractometer. The structure was solved by the heavy-atom method and refined by the block-diagonal-matrix least-squares method to final \underline{R} value of 0.076. Figure 1 shows the [13]aneN₄ macrocycle in a folded <u>cis</u> configuration²⁾ with the phenolate oxygen and water oxygen occupying the remaining two <u>cis</u> sites. The Ni-N₁, -N₄, -N₇, and -N₁₀ bond lengths are 2.125(6), 2.082(5), 2.154(7), and 2.064(7) Å, respectively, which are undoubtedly longer than the average low-spin Ni^{II}-N bond length of 1.86 Å⁴) but are in the normal range 2.05 - 2.10 Å for high-spin Ni^{II}-N bonds.^{6,10}) The Ni-O₂₀(phenolate) bond length is extremely short 2.020(5) Å. The Ni-O₅W(H₂O) bond length is 2.150(5) Å, completing the octahedral structure. Thus, Clo_4 ion is not in the 6th coordination site, like the Ni^{II}-[14]aneN₄ homologue complex.⁸) The present crystal structure study vividly demonstrates the strong LF strength by the intramolecular phenolate, under which Ni^{II} is rendered high-spin with the enlarged metal ion forcing [13]aneN₄ into the <u>cis</u> configuration. The crystals of 3 form a blue-yellow aqueous solution [1 mM, resulting pH 7.3 at 25 °C and $\underline{I} = 0.1$ M (NaClO₄)](1 M = 1 mol dm⁻³). The solution intensifies yellow color (λ_{max} 424 nm) at more acidic pH and blue color (λ_{max} 559 nm) at more basic pH and shows an isosbestic point, which indicates an occurrence of an equilibrium for low-spin + high-spin Ni^{II 6)} depending upon pH. At pH 3.5, the absorption coefficient at 424 nm reaches a limiting ϵ value (130 dm³mol⁻¹cm⁻¹), which is taken as the molar absorption coefficient of the low-spin, square-planar chromophore. This acidic solution was confirmed to be diamagnetic by the Evans method 11) at 35 $^{\circ}\text{C.}$ Moreover heating (to 50 $^{\circ}\text{C}$) and raising the ionic strength (to 6 M NaClO₄) do not increase the absorbance any further. The limiting ϵ value of 107 (at λ_{max} 425 nm) was reported for yellow, low-spin, square-planar Ni^{II}-[13]aneN₄.6) Hence, at pH 7.3, 21% of the low-spin spices is present by estimation of ϵ/ϵ_{lim} . The remaining 79% is the high-spin complex, which is confirmed by a similar calculation using ϵ at 559 nm ($\epsilon_{\mbox{lim}}$ 6 attained at pH >10). The pH 10.5 solution is paramagnetic (μ_{eff} = 2.90 μ_{B}) by Evans method¹¹⁾ at 35 °C. Meanwhile, the same complex solution shows two UV absorption peaks at 291 nm and 272 nm. The measure- ment of ϵ at these peaks indicates 77% of the phenolate anion form and the rest 23% of the phenol form. The calculation is based on the ϵ_{lim} value of 3400 dm 3 mol $^{-1}$ cm $^{-1}$ at 291 nm for 100% phenolate form of the complex $\underline{3}$ (attained at pH >10; an identical ϵ_{lim} value was obtained with free ligand $\underline{2}$ at pH >10) or on the ϵ_{lim} value of 2000 dm 3 mol $^{-1}$ cm $^{-1}$ at 272 nm for 100% phenol form 4 (attained at Scheme 1. pH 3.5; an identical ε_{lim} value was also obtained with $\underline{2}$ at pH 3.5). The good agreement in the high-spin/low-spin Ni^{II} ratio and the pendent phenolate/phenol ratio proves that the equilibrium of pendent phenolate $_{+}^{+}$ phenol directly determines the high-spin (folded) or low-spin (square-planar) structure; in other words, only with deprotonation, the pendant phenol can perturb the strong low-spin LF of the square-planar [13]aneN₄ (see Scheme 1). The protonation constant \underline{pK}_{a} for the phenolate in $\underline{3}$ is estimated to be 6.7 at 25 °C and \underline{I} = 0.1 M (NaClO₄) on the basis of potentiometric titration as well as spectrophotometric measurements at 291 nm and 272 nm. ## References - L. Fabbrizzi, M. Micheloni, and P. Paoletti, Inorg. Chem. <u>19</u>, 535 (1980); M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., <u>1976</u>, 2341. - V. J. Thöm, C. C. Fox, J. C. A. Boeyens, and R. D. Hancock, J. Am. Chem. Soc., <u>106</u>, 5947 (1984). - L. Y. Martin, L. J. DeHayes, L. J. Zompa, and D. H. Busch, J. Am. Chem. Soc., <u>96</u>, 4046 (1974). - 4) J. M. Waters and K. R. Whittle, J. Inorg. Nucl. Chem., 34, 155 (1972). - V. J. Thöm, J. C. A. Boeyens, G. J. McDougall, and R. D. Hancock, J. Am. Chem. Soc., <u>106</u>, 3198 (1984). - 6) L. Fabbrizzi, J. Chem. Soc., Dalton Trans., <u>1979</u>, 1857. - 7) E. Kimura, T. Koike, and M. Takahashi, J. Chem. Soc., Chem. Commun., 1985, 385. - 8) Y. Iitaka, T. Koike, and E. Kimura, Inorg. Chem., <u>25</u>, 402 (1986). - 9) Earlier [Ni^{II}([13]aneN₄)(NCS)₂] was reported to have <u>cis</u>-conformation; L. Y. Martin, C. R. Sperati, and D. H. Busch, J. Am. Chem. Soc., <u>99</u>, 2968 (1977). However, no crystal data were available. - B. Bosnich, R. Mason, P. J. Pauling, G. B. Robertson, and M. L. Tobe, J. Chem. Soc., Chem. Commun., 1965, 97. - 11) D. F. Evans, J. Chem. Soc., <u>1959</u>, 2003. - 12) C. K. Johnson, "ORTEP," Report No. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1965. (Received May 6, 1986)